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Climb of a bore on a beach 
Part 3. Run-up 

By M. C. SHEN AND R. E. MEYER 
Brown University, Providence, Rhode Island 

(Received 30 November 1963) 

When a bore travels shoreward into water at rest on a beach, then according to 
the first-order non-linear long-wave theory, the bore accelerates and decreascs 
in height, until it collapses at the shore. The investigation here reported concerns 
the question, what happens next Z It is formulated as a singular characteristic 
boundary-value problem with somewhat unusual mathematical properties. I ts  
asymptotic solution predicts a rather thin sheet of run-up and back-wash with 
some unexpected features. 

1. Introduction 
Parts 1 (Ho & Meyer 1962) and 2 (Shen & Meyer 1963) are concerned with the 

mathematical question of the ‘memory’ of a class of solutions of a non-linear 
hyperbolic problem, and hydrodynamical language is used only to conform to 
convention. However, being indebted to Dr Van Dorn of the Scripps Institution 
of Oceanography for impressing upon us the practical importance of the age- 
old problem of surf-breakers, run-up and back-wash-we now apply the non- 
linear shallow-water theory speculatively to waves on a beach. 

The situation envisaged corresponds to long swell for which the shore 
behaviour of each wave is virtually independent of the back-wash of the preceding 
wave and each travels effectively into water at rest. Since the gasdynamical 
analogy (Stoker 1957) furnishes a fair degree of understanding of the process of 
bore formation, the present investigation begins only when the bore is well 
developed and forms the head of the wave (figure 1) .  The bore is considered as 
a discontinuity of water velocity and surface elevation such that mass and 
horizontal momentum are conserved [(I, 4) to (I, 6)lt The continuous water 
motion is considered to satisfy the first-order shallow-water equations (I, 2 ) ,  
(I, 3).  As in part 1,  and in contrast to part 2 ,  only beaches of uniform slope will 
be considered. 

Part  1 discusses the development of the bore up to the time t = 0 when it 
reaches the original shore position x = 0. Since the equations are hyperbolic, 
this involves only a partial analysis of the water motion. It is best to refer to an 
(x, t)-diagram (figure 1) .  If the successive bore positions are represented by the 
‘bore path ’ B, and the ‘limiting characteristic ’ ( 5  I, 3) by the curve L, then analy- 
sis of the water motion a t  the times and positions represented by points in the 
shaded region (figure 1) between L and B suffices for the determination of the 

by a s&ix I. 
t Equations and section numbers of part 1 (Ho & Mryer 1963) will be distinguished 
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bore development for t < 0. In  particular, the shape and velocity distribution of 
the waves to seaward of the bore need be known at the initial time T only for 
So < x < X (figure 1) .  

i c  

X ------+ 

-T 

FIGURE 1. Definition sketch and (x, $)-diagram showing locus B of successive bore positions, 
‘limiting characteristic ’ L and ‘seaward boundary characteristic ’ C. A greatly contracted 
horizontal scale is implied. 

Actually, the initial conditions on t = T are replaced in part 1 by an equivalent 
boundary condition on the segment between Band L of the receding characteristic 
line C passing through (X, T) (figure l), referred to as ‘seaward boundary’. 
The boundary condition adopted involves no detailed specification of wave 
shape, but only a monotoneity assumption or inequality for the acceleration 
($1, 4; its a priori justification is not here attempted any more than that of the 
governing equations). The asymptotic bore behaviour, as t + 0, is then deduced 
in part 1 without any further assumptions or approximations. The main result 
is that a singularity of the water acceleration occurs, even though the bore height 
tends to  zero and the bore velocity, like the water velocity just to seaward of the 
bore, tends to a positive limit uo. 

The investigation to be reported now concerns the further development of the 
water motion, and in particular, the motion of the shore line defined by h(x, t )  = 0 
(figure l),  for t > 0. Such analysis requires a knowledge of the initial wave 
shape and velocity distribution to seaward beyond x = X, (figure l),  but it 
will be assumed only that the initial data are extended over an arbitrarily short 
distance X , - E  < x < 5,. More specifically, it  will be assumed that the mono- 
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toneity assumption of $1, 4 remains valid on C (figure 1) for an arbitrarily short 
time longer than is required for the results of part 1.  We may then expect the 
solution to be determined asymptotically in the narrow strip between L and a 
neighbouring characteristic line of the same family, shown dashed in figure 1.  
The shore line movement should thus be determined for 0 < t < to = O ( E ) ,  
and as 8 --f 0, we may expect to find the initial velocity of any reflected bore and 
the initial velocity of the shore line. 

The expectation is not at all borne out, however, when a bore heads the in- 
coming wave. The little singularity of the acceleration for t f 0 discovered in part 1 
will be shown to be the herald of a magnificent singularity for t J. 0, which yields 
the shore line movement for t > 0 over a time interval independent of 6, in fact, 
over the duration of the whole run-up and part of the backwash ! It is in the 
nature of a singularity, moreover, that it dominates the solution over a whole 
region, and thus firm indications concerning the internal structure of run-up 
and back-wash under normal circumstances wilI be obtained, even though nothing 
but the very shore line is strictly determined in the limit e = 0. Despite the hyper- 
bolic character of the governing equations, therefore, much of the run-up and 
back-wash turns out to be determined by the same, restricted portion X, 6 x < 3 
(figure 1)  of the incident wave which determines the shoreward travel of the bore.? 

Nor is a detailed, quantitative knowledge of even that portion of the incident 
wave required. I ts  only quantitative property possessing a major influence on the 
observable predictions is the basic velocity scale u,, just as in parts 1 and 3. An 
acceleration parameter a, representing the wave plays again a crucial role in the 
mathematical argument ( $ 2  below), but only its signature matters: its actual 
value should, at best, be barely observable. 

Three physical predictions will be derived ( $  3). The shore line has discontinuous 
velocity and acceleration. Both vanish for all t < 0. But as t & 0, the shore line 
velocity tends to u, > 0, and its acceleration, to gdh,/clx < 0, and the shore line 
maintains this constant deceleration during the whole run-up and part of the 
back-wash. This stands in contrast to the particular solutions of Carrier & Green- 
span (1958) in which the shore line performs a smooth oscillation with variable 
acceleration. 

The net water height, close to the shore line, is found proportional to the 
square of the distance from the shore line, during the run-up and part of the back- 
wash. This is again in contrast to the particular solutions of Carrier & Qreenspan 
(1958), for which the net water height, close to shore, is generally proportional 
to the shore distance. At a fixed, small distance from the (moving) shore line, 
moreover, the net water height is here found proportional to t -2 ,  if t denotes 
again the time since the start of the run-up, and this also holds for the whole 
ruii-up and part of the back-wash. It thus appears that the notable thinness of 
the sheet of run-up and especially, back-wash, need not be explained entirely 
from seepage through the sand. 

t Apart from its physical implications, this result may be of some mat.ht.matica1 interest. 
The governing differential equations are hyperbolic, but exhibit a bCLhaviour differing 
radically from that characteristic of hyperbolic equations. This is due, of course, to thr 
fact that the equations arc singular. 
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The third prediction concerns the formation of, not a reflected, but a curious 
secondary bore in the int.erior of the back-wash ( $  3). 

We have limited our attention to qualitative predictions of the model. The 
quantitative predictions, and also some features of the qualitative ones, must 
clearly be subject to modification by a variety of physical effects which cannot 
be described by the conventional shallow-water equations. But it is remarkable 
that so simple a set of non-linear equations should go as far as it does in describing 
the whole phenomenon of long surf, from bore-formation to back-wash. 

2. Formal solution 

cal variables a(a, p) and b(a, p) defined by 
To avoid technical complications, it  is necessary to concentrate on the canoni- 

u = (a+/?)$ at/&, b = (a  +p)g at/ap, (1) 

a = 2c+u+y t -u , ,  p = Bc-74--yt+u,, ( 2 )  

c2 = gh(.x, t ) ,  (3) y = -gh,/x = const. > 0, 

where t denotes the time after arrival of the bore a t  the initial shore position, x 
the horizontal distance, measured landward from that position, u the water 
velocity in the x-direction, h the local water depth, h, the equilibrium water 
depth, y the gravitational acceleration and ZL, the limit of the bore velocity 
($1, 3). The two-dimensional motion of water on a beach is then governed, 
according to the first-order, non-linear shallow-water theory ($1, 2), by 

aapp = -+(a + p)-lb, abpz = -;(a + p - 1  CI .  (4) 

Once a(a, p) and b(a, p) are known, t(a, b) and s(a, p) are found from (1) and the 
characteristic equations, 

axpg = (ZL + c )  atjag, a x p x  = (u - c )  atpa, ( 5 )  
by quadrature. 

The monotoneity and regularity assumptions of $ I, 4 may be expressed as 

n and aajacc are piecewise continuous for p = Po. c 
I n  $1, 4, (6) is set for a < 0, and it is now extended to 0 < a < a,, where a, is 
an arbitrary, positive number; so is Po, except for an upper bound discussed in 
51,s. Tniemayaddtheresultsof$I,6thatonL,i.e.€orcr = O,/l 3 0, 

I a(0,p) = a,+O(ci) > 0; 

(6) 
a(a,Po) > 0, 1 

I 
1 r(0,p) = O(c4) < 0. 

Equations (4), (6) and (7) formulate a characteristic boundary-value problem 
for the region (7, defined by 0 < IX < a,, 0 < p < a, (figure a),  of which a unique 
and continuous solution is known (Courant 1969) to exist in the region G, defined 
by 0 < a 6 a,, 0 < 6 6 p < Po. There is no certainty that a solution exists in a 
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straightforward sense in Go, since (4) are singular at a+p = 0, and our first 
preoccupation must be with letting 6 + 0. 

Observe that the problem just defined is a formal one, since we have trans- 
formed away the non-linearity of the shallow-water equations ($1, 2) without 
regard to the implications of such a procedure. Our second preoccupation must 
therefore be with the question whether the solution is physically admissible, 
and in particular, whether it predicts single-valued functions a(x,  t )  and p(x ,  t )  
in the regions corresponding to Gb and Go. 

L I  I 
I 
I 
I 
I 
I 
I 
I 
I 

a0 

- i a  

FIGURE 2. Diagram of thc characteristic plane showing bore path 23, 
characteristic L and seaward boundary characterist ic C. 

limiting 

The technical discussion of the solution is deferred to the Appendix, where we 

Lemma 1.  Let a = k p, with 0 < k < K ,  where K is arbitrary. Then as p 4 0 
prove 

with k fixed, cr+b -+ noP( --+,$; 1; a/(a+P)), 

a - b  + UoF( -;,;; 1;  a/(a+P)), 

uniformly in Go, where F denotes the hypergeometric function. 
Lemma 2.  lim lim a(kp,P)  = - k 0 / ( 3 n ) ,  

f->m 8-+o 

lim lim [b(k/?, @)/log (1 + k ) ]  = ao/n 
li+m 8++0 
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then follows readily from known properties of the hypergeometric function 
(Barnes 1908; Whittaker &Watson 1940). 

A comparison of Lemma 3 with (7)  shows that both a and b must change sign 
in Go. Since a and b are known to be continuous in G,, and Lemma 1 shows them 
to be continuous also in Go, except at the boundary /3 = 0, such change of sign 
must occur at ‘singular lines’ a = 0 and b = 0. By Lemma 1, these singular 
lines must approach the origin in directions alp = k ,  with 0 < k < 00 and with 

FIGURE 3. Diagram of the characteristic plane showing course of first singular 
line D schematically. 

different values of k for different singular lines. Any intersection of singular 
lines in Go can therefore be avoided, if a, be chosen sufficiently small. It is 
known (Meyer 1949) that a(x,  t ) ,  P(x, t )  are not single-valued at  the ‘limit 
lines’ which are the images of the singular lines in the (2, t)-plane, and the 
singular lines therefore represent a bound to the extent of the (a,  &-region in 
which the formal solution can be admissible. Thus if D denotes the singular 
line arrived at first, as a increases from zero, for fixed p (figure 3), then 
the region G* of the (a, ,!?)-plane in which the formal solution is admissible 
is that between the bore B and the region shaded in figure 3. Observe that, 
since the mapping into the (x,t)-plane is 1-1 in the sector between B and D 
(figure 3), a comparison of figures 1 and 3 also shows the limit line corresponding 
to D to be that first arrived at with increasing time, in the (x, t)-plane. 
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The precise extent of G* will not be relevant to what follows, but it will be of 
interest to know whether a = 0 or b = 0 on D. The answer is given by an inter- 
lacing theorem (Meyer 1949); by (4) and ( 7 ) ,  as a increases from zero, for fixed p, 
a must change sign before b can vanish, and hence, a = 0 on D. Now, in so far 
as limit lines are connected with bore formation (Stoker 1957; Meyer 1960), an 
‘advancing’ limit line a = 0 is connected with an ‘advancing’ bore. Therefore, 
our result does not indicate the reflexion of the original (advancing) bore of part I 
as a receding bore, but rather seems to throw doubt on the physical relevance 
of the formal solution. This can be elucidated only by a study of the mapping 
(a, p) --f (x, t ) ,  especially near the extraordinary point a = /3 = 0. 

3. Interpretation 
From (1) , (3) and ( 5 ) ,  

and by ( 7 ) ,  t(0, p) -+ 0 and x(0,p) -+ 0 as pJ 0. The form of (8), (9) and Lemma 1 
shows that an approach to a = /3 = 0 along three families of curves 

a = ,upA, h = const., 0 < ,u = const. < co 

should be considered, with a distinction between (i) the ‘steep’ curves for which 
h > +, (ii) the ‘main’ curves for which h = +, and (iii) the ‘flat’ curves for which 
0 < h < +. On any curve on which the origin is approached in the positive 
quadrant (figure 2) so that daldp + 0, 

a(a,p) = ao+o(l) ,  (10) 

by Lemma 1.  On any steep curve, therefore, from (8) and (9), 

lim t(a,P) = 0, lim x(a,/3) = 0. 
P++O P++O 

On any main curve, however, 

by (S), and then from ( O ) ,  

lim t (a ,p)  = pa,o, 
8++0 

lim x(a, p) = ,uaou, - &y,u2a& 
p++0 

And on any flat curve, the limits of x and t do not exist: for h = 1 and any fixed p,  
in particular, Lemma 1 can be used to show that 

lim [,&(a,,B)] > 0 and lim [px(a,P)] < 0 
8-+O 8++0 

exist, and generally, t + + co, x --f - co on the flat curves. 
The extraordinary point a = /3 = 0 cannot therefore be thought of as a point, 

but is a concept definable only through the mode of approach. Each point 
(a ,  p) interior to Go has a single image (x, t ) ,  and any curve a(& defines a family of 
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such images. On the steep curves, as on those (part 1) approaching a = p = 0 
between the bore path B and the limiting characteristic L (figure 3),  the limiting 
(5, t)-images all coincide with x: = t = 0. But on the main curves, the limiting 
(x, t)-images form a curve segment P given by (1 l), (12). On the flat curves, no 
limiting (x, t)-images exist. 

The curve P is the segment t 3 0 of the parabola 

x = u t-- l  t2 = 0 2Y XS(% 

and since h = (a +/I)”( 1 6 9 )  = 0 on it (but nowhere else in Go), it  marks successive 
positions of the shore.? The maximum run-up distance is x,(uo/y) = u;/(ay) and 
the corresponding run-up height is u;/( 29) above the undisturbed water level. 
From t = uo/y onwards, the shore recedes. Eventually, however, the parabolic 
shore path P wanders out of the admissible part of the formal solution, as will 
be seen below. 

To study the water-profile near the shore line, note from the preceding results 
that any line t(a, p) = const. > 0 must approach the extraordinary point a = p = 0 
like a main curve.1 By (2) and (5) 

aa d p  
at 

[(u + c) @+ (u - c) - - _ -  - d x  
dc l + d a / d p  

on a curve t = const., where atlap + (atjaa) d a l d p  = 0. On a main curve a = ,up$, 
P-adaldp -+ 3 p / 2  and /3$atlaa --f a,, 

by ( 1 )  and ( l o ) ,  so dxldc -+ - 3,uu0, or by ( l l ) ,  

dc /dx  + - (3 t ) - l ,  

as c + 0 on a curve t = const. > 0; whence by (3), 

(x, - x)p2 h * ( 3 t ) 4  

as (x, - x) + 0 for fixed t > 0. (At the very tip of the run-up, of course, the water 
profile is modified locally by effects not described by the present model.) 

The genesis and precise course of the first limit line D (figure 4) depends on 
details of the seaward boundary condition not here considered, but as noted in 
$ 3 ,  the singular line approaches the point a = p = 0 along a flat curve, and the 
limit line thus approaches the shore path P only asymptotically, as t --f 03, and 
the general course of D is therefore roughly as indicated in figure 4. For a deter- 
mination of the ( x ,  t)-image of the ‘admissible ’ region G* ( §  3),  it  is desirable to 

t Like the straight vacuum lines of gasdynamics, P i s  a characteristic line of both 
families, and no other characteristic line meets it. In  contrast to the limiting character- 
istic line L of 01, 3, defined as a 1 0, the characteristic line a 4 0 consists of L and P. 
The formula dx/dt  = z*. obtained from ( 5 )  for regular images of segments of the line 
a +/I’ = 4c = 0 is shown by (1  l ) ,  (12) to be valid also in this degenerate case. 

$ Actually, dz/dt + u as p 4 0 on a curve a = p@, so that the (r,  t)-images of the main 
curves approach P tangentially, but there exists a family of curves a//?% = p + O ( p i )  
on which t = const. The mapping between (a,  p) and (2, t )  i s  singular all along P. 
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check the course of the Characteristic lines a(x,t) = const. and P(x , t )  = const. 
Note that atlas and atlap are of fixed sign in G*,  but by ( 5 ) ,  axlaa and ax/a/3 
change sign where (u - c) and (u + c) do. By ( 2 )  and (1 1)) 

u(p,@, p) - uo c + - y p 0  as p .J 0, 

FIGURE 4. Sketch of (r, t)-diagram with bore path B, shore path P,  limit Iine D 
and one characteristic line of each family (dashed). 

so the lines u c = 0 run as indicated in figure 5 ,  with u & c > 0 to  the left of these 
lines, since uo > 0. The ‘advancing ’ characteristic lines a = const.-of which the 
limiting characteristic L is a member (figure 1)-therefore run landward into 
the bore, as time increases, for a 6 0; but for a 3 0 ,  they run landward at  first 
and then turn seaward to approach D, which is an envelope of their family (Meyer 
1949). The ‘receding’ characteristic lines j3 = const.-of which the seaward 
boundary C is a member (figure 1)-also run landward at  first (for sufficiently 
small p) and then turn seaward to approach D, which is a cusp-locus of their 
family (Meyer 1949). The image of G* is therefore the region between the bore 
path B and shore path P,  on the one hand, and the shaded zone (figure 4), on the 
other hand. 

In  view of these results, it becomes possible to regard the limit line D as indi- 
cating bore formation, which is the only known physical interpretation of a 
limit line. Note, however, that it  must be an unusual bore. On the one hand, 
since a = 0 on D, the new bore must-like the original bore B (figure 1)-be an 
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‘advancing’ bore across which the water level rises from the landward to the sea- 
ward side. On the other hand, the general course of D (figure 4) shows that the 
new bore-much in contrast to the original one-must be expected to move 
seaward, rather than landward. Of all the results noticed, this has been to us 
the most surprising, and it does not seem to be easily observable on our local 
beaches. But we have found that the secondary bore in the back-wash can 
indeed be observed in surf due to long swell. 

The research here reported was supported by the U.S. Office of Naval Research 
under Contract Nonr-562(34). 

FIGURE 5 .  Sketch of lines u c = 0 in the characteristic plane. 

Proof of Lemma 1 Appendix 

Let Yl = a + b and Y2 = a - 6 ,  then (4) and ( 3 )  imply 

azyijaaap = ni(a+p)-2yi (i = 1, Z ) ,  (13) 

where n, = I$, n2 = $. The Riemann functions (Courant 1963) of (13) are the 
hypergeometric functions 

P(ai, b j ;  ci; z )  = F,(z), 

a, = -Q, b, = p, C, = 1, 

a2= -1 2 ,  b2 =$, ~2 = 1, 



Climb of a bore on a beach. Part 3 

and the Riemann representations of I; in G, are (Courant 1962) 

123 

(14) 

if they exist, where the suffix i is omitted on Y ,  the noted suffix indicates partial 
differentiation, and 

= - (a‘ - a)  ( P o  - P)  (a’ + P0)-1 (a  + 
t: = a(P’ - P)  P’-l(a + P)- l ,  GI = ..(Po - P )  PcVa +P)-l. 

FIGURE 6. Characteristic plane with boundaries of regions corresponding to three typical 
members of the sequence of characteristic boundary-value problems. 

I2 = J,I;P(O,i l ’ )11(6;cII)dp’ ,  

II(t:; t:”) = & K O )  -piKI 
if I, and I, exist. 

4 0 
then involves a sequence of characteristic boundary-value problems determining 
Y(a,P) from the data on the segment /I < p’ < Po of L and the segment 
0 < a’ 6 kp of C, and the latter segment will get progressively shorter, as the 

Now let a = rCp with fixed k,  always assuming 0 ,< li ,< h-. The limit 
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sequence proceeds (figure 6). Consider any member of the sequence and let 
PI denote any number such that /3 < p1 < Po (figure 7). The second statement of 
(6) is as valid on P = P1 as on P = Po, because any discontinuities of a or &/a@ 
must persist along lines CL = const., by (4). Since a(0, PI) > 0 (QQI, 4,5) ,  it  follows 
that the first statement of (6) remains valid for p = P1, 0 d CL 6 kPl, provided P1 
is sufficiently small. For our sequence, therefore, we may replace Po by /I1 in 
(14) and (15), apply (6) on /I = PI, and choose PI sufficiently small to profit fully 
from (7). 

41. C. Shen and R. E.  Meyer 
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FIGURE 7. Characteristic plane showing boundary shift from Po to PI. 

so that IF,(rl)l is bounded. For sufficiently small p, moreover, it  follom-s from (6) 
and (4) t ha t  I ~ ( C L , / ~ ~ )  is continuous, and hence, I, + 0 as P J. 0. Next, for 
/3 < P' 6 PI, we have 

0 6 ( 1 + k ) @  6 (p1-P)iPl < 1, 

so that lFj(<)l is bounded, even if we let PJ, 0; and \c(&,)l is similarly bounded. 
From (4) and (7), moreover, Yp(0,P') = 0(/3'5), if PI be chosen sufficiently small, 
and hence, I, + 0 as p.10. But then also <,, +- u/(u +p)  and Y(0, P)  -+ a,, by (7), 
and Lemma 1 follows from (15). 
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Remarks 

An intuitive approach to Lemma 1 is offered by the observation that 

a(0,P) = const. = a,, b(0 ,D)  = 0 for 0 6 < 8, (16) 

is an obvious approximation to the bouiiclary condition ( 7 ) ,  and the singularity 
of (4) then suggests that (4) and (16) may be satisfied by functions a and b 
depending only on ./(a +p). Their sum and difference are found from (4) to be 
governed by the hypergeometric equations corresponding to Fi. 

Conversely, the same idea, together with the linearity of (4), may be used to 
deduce, from the orders noted in (7),  much sharper estimates of a and b than are 
required in § § 2 , 3  above. 

Lemmas 1 and 3 may be extended to prove 

Iim lim a(a,p) = -2ao/(37r), 
z++o p 4 + o  

and for a > 0, 

which show the singularity of the formal solution on the positive a-axis (figure 2). 

li1n ma, P)/Iog{P/(x +/]))I = - 4 7 7 ,  
p-+O 

R E F E H E N C E S  

BARNES, E. W. 1908 Proc. Lond. Math.  Soc. ( 3 )  6, 158. 
CARRIER, G. F. & GREENSPAN, H. P. 1958 J. Fluid Afech. 4, 97. 
COURANT, R. 85 HILBERT, D. 1962 Methods of Mathematical Physics, vol. 2. Now York: 

Ho, D. V. & METER, R. E. 1962 d.  F h i d  Mech. 14, 305. 
NIEYER, R. E. 1949 Phil .  Trans. A, 242, 153. 
MEYER, R. E. 1960 Theory of Characteristics of Inzliscid Gas Dynamics, Encycl. of Physics, 

9. Heidelberg: Springer. 
BHEN, M. C. C% MEYER, R. E. 1963 J .  Fluid Mech. 16, 108. 
STOKER, J. J. 1957 Water CVa7w. New York : Interscience. 
WHITTAKER, E. T. ti WATSON, G. N. 1940 drorlern Analysis. Cambridge University 

Interscience. 

Press. 


